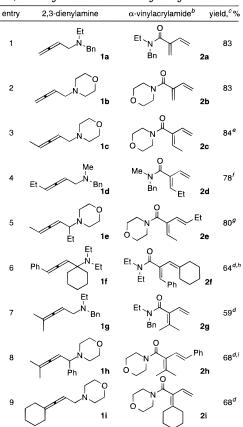

Palladium-Catalyzed Regioselective Carbonylation of 2,3-Dienylamines to α-Vinylacrylamides

Yasushi Imada, † Giuseppe Vasapollo, ‡ and Howard Alper*

Department of Chemistry, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, Canada K1N 6N5

Received August 20, 1996


The selective insertion of carbon monoxide into an unactivated carbon-nitrogen bond of an amine to form an amide provides a novel and convenient process for homologation and functionalization of nitrogen-containing organic molecules. Although some nitrogen heterocycles have been found to undergo carbonylative ring expansion efficiently,¹ the palladium-catalyzed homologation of allylamines was the only example involving an acyclic system.² More recently, we found that the carbonylation of propargylamines occurs regioselectively in the presence of a catalytic system consisting of tris-(dibenzylideneacetone)dipalladium(0), 1,3-bis(diphenylphosphino)propane (dppp), and *p*-toluenesulfonic acid, affording 2,3- or 2,4-dienamides.³ It was of considerable interest to determine whether amines containing an allenyl unit can be carbonylated using a palladium-based catalytic system. We now wish to report the highly regioselective efficient carbonylation of 2,3-dienylamines^{4,5} affording α -vinylacrylamides in 59–84% isolated yield (eq 1).

N-Benzyl-*N*-ethyl-2,3-butadienylamine (**1a**) was carbonylated to *N*-benzyl-*N*-ethyl-2-methylene-3-butenamide (**2a**) in 83% yield, using a catalytic system consisting of $Pd_2(dba)_3$ ·CHCl₃ (0.5 mol %), dppp (1 mol %), and *p*-TsOH (1 mol %) in dichloromethane at 75 °C for 3 h. It is noteworthy that the insertion of carbon monoxide occurred in a regioselective manner at the central sp carbon of the allene unit, and no other isomers were detected. The addition of *p*-TsOH promotes the formation of amide **2a**; in the absence of *p*-TsOH, a longer reaction time is required. The amide **2a** was not formed in the absence of dppp, and use of excess dppp reduced the catalytic activity of palladium. Monodentate phosphines such PPh₃ and PCy₃ are ineffective.

The carbonylation reaction was applied to a series of 2,3-dienylamines, and the results are listed in Table 1.

 Table 1. Palladium-Catalyzed Carbonylation of 2,3-Dienylamines to α-Vinylacrylamides^a

^{*a*} Reaction conditions: 2,3-dienylamine, Pd₂(dba)₃·CHCl₃ (0.5 mol %), dppp (1 mol %), *p*-TsOH (1 mol %), CH₂Cl₂, 75 °C, 3 h unless otherwise noted. ^{*b*} Products were identified by spectroscopic methods [IR, MS, NMR (¹H, ¹³C)]. ^{*c*} Isolated yield. ^{*d*} Pd₂(dba)₃·CHCl₃ (2 mol %), dppp (4 mol %), *p*-TsOH (4 mol %), 6 h. ^{*e*} 95:5 (α,β -*E*/*Z*). ^{*f*} 97:3 (α,β -*E*/*Z*). ^{*g*} 65:35 (β,γ -*E*/*Z*); not determined for α,β -*E*/*Z*. ^{*h*} 98:2 (α,β -*E*/*Z*). ^{*i*} 97:3 (β,γ -*E*/*Z*).

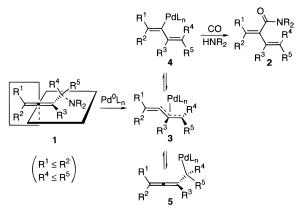
Less hindered 2,3-dienylamines, such as nonsubstituted, 4-monosubstituted, and 1,4-disubstituted 2,3-dienylamines **1a**-**e**, were carbonylated smoothly in the presence of 0.5 mol % of palladium catalyst [Pd₂(dba)₃·CHCl₃], affording the α -vinylacrylamides in 78–84% yield (Table 1, entries 1–5). Highly substituted 2,3-dienylamines, such as 1,1-disubstituted and 4,4-disubstituted 2,3dienylamines 1f-i, did not undergo carbonylation under the standard reaction conditions. However, carbonylation of these amines can be brought about successfully after 6 h, when 2 mol % of palladium catalyst was used, affording the highly substituted α -vinylacrylamides in 59-68% isolated yield (Table 1, entries 6-9). In all cases, the insertion of carbon monoxide occurred regioselectively at the central sp carbon of the allene unit giving α -vinylacrylamides as the sole product, which may be used in Diels-Alder reactions. The carbonylations of 4-monosubstituted 2,3-dienylamines 1c-f were stereoselective, affording exclusively the α,β -*E* isomer of **2c**-**f** as confirmed by NOE experiments. To our knowledge, only two methods have been reported for the direct synthesis of α -vinylacrylamides, including [2 + 2] cycloaddition of β -vinylynamines with carbonyl compounds⁶ and the dehydrogenation of α , β -unsaturated amides via immonium chloride.7

[†] Present Address: Department of Chemistry, Faculty of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560, Japan.

[‡] Present Address: Department of Material Science, University of Lecce, Via Arnesano, 73100 Lecce, Italy.

⁽¹⁾ For a review, see: Khumtaveeporn, K.; Alper, H. Acc. Chem. Res. 1995. 28, 414.

⁽²⁾ Imada, Y.; Nishimura, K.; Murahashi, S.-I. *Tetrahedron* **1994**, *50*, 453.


⁽³⁾ Imada, Y. Alper, H. J. Org. Chem., in press.

^{(4) 2,3-}Dienylamines were prepared in 34-71% yield by coppercatalyzed Mannich-type reaction^{5a} of the corresponding methyl propargyl ether with amines and aldehydes and subsequent AlCl₃-mediated reduction with LiAlH₄.^{5b}

^{(5) (}a) Mornet, R.; Gouin, L. *Bull. Soc. Chim. Fr.* **1974**, 206. (b) Barbot, F.; Dauphin, B.; Miginiac, P. *Synthesis* **1985**, 768.

⁽⁶⁾ Kormer, M. V.; Tolchinskii, S. E.; Maretina, I. A.; Petrov, A. A. Zh. Org. Khim. **1985**, 21, 725; Chem. Abstr. **1985**, 103, 141583.

Scheme 1

A possible mechanism for the reaction is outlined in Scheme 1. Palladium(0) undergoes oxidative addition to the central sp carbon of a 2,3-dienylamine 1, in *anti*- $S_N 2^{\prime}$ fashion (as proposed in an allylic system),⁸ leading to the π -allylpalladium intermediate **3**. Similar π -allylpalladium intermediates, in which the π -allylpalladium unit is directly connected to the double bond, have previously been proposed for the palladium-catalyzed reaction of 2,3dienvl alcohols⁹ and their esters.¹⁰ The insertion of carbon monoxide occurs selectively via the 1,3-dien-2ylpalladium intermediate 4 rather than the 2,3-dienylpalladium intermediate 5, giving α -vinylacrylamide 2. This selectivity is opposite to that of the palladiumcatalyzed allylic carbonylations, where carbon monoxide is inserted only at the least substituted terminal carbon of the allyl unit.¹¹ The high selectivity may be explained in terms of the greater stability of the 1,3-dienyl complex **4** in comparison with the isomeric 2.3-dienvl species **5**. because of the possibility of π -conjugation in the 1,3dienvl complex 4.

The stereochemistry of the reaction can also be accounted for using Scheme 1. Palladium attacks at the

Tetrahedron Lett. **1984**, *25*, 203. (c) Nokami, J.; Maihara, A.; Tsuji, J. Tetrahedron Lett. **1990**, *31*, 5629.

(11) Murahashi, S.-I.; Imada, Y.; Taniguchi, Y.; Higashiura, S. J. Org. Chem. 1993, 58, 1538 and references cited therein.

central sp carbon from the direction of the smaller substituent at C-4 to avoid steric repulsion, forming the π -allylpalladium intermediate (*E*)-**3** and subsequently to the σ -1,3-dien-2-ylpalladium (*E*)-4. Insertion of carbon monoxide takes place with retention of stereochemistry to give the (*E*)- α -vinylacrylamide **2** exclusively. When sterically hindered 1,1-disubstituted and 4,4-disubstituted amines are used as the substrates, these substituents block the approach of palladium, resulting in low reactivities of these hindered 2,3-dienylamines.

The carbonylation of 1-monosubstituted 2,3-dienylamines 1e and 1h gave the α -vinylacrylamides 2e and **2h** as a mixture of two stereoisomers concerning β , γ double bond (Table 1, entries 5 and 8), which are 65:35 and 93:7, respectively. In both cases, the major isomers were determined to be β , γ -*E* on the basis of the coupling constants of those protons in ¹H NMR. These selectivities may be governed by the thermodynamic stability of synand *anti*- π -allylpalladium intermediates.

The following general procedure was used: In a 45mL autoclave with a glass liner was placed the 2,3dienylamine (1.0 mmol), Pd₂(dba)₃·CHCl₃ (0.005 mmol), dppp (0.01 mmol), p-TsOH (0.01 mmol), and CH₂Cl₂ (5 mL). After being flushed three times with CO, the autoclave was charged to 600 psi, and the mixture was stirred at 75 °C for 3 h. After the mixture was cooled to room temperature and the CO was released, the reaction mixture was passed through a plug of Florisil with CH2- Cl_2 as an eluant to give the amide containing a small amount of dba. The amide was further purified by flash column chromatography on silica gel.

In conclusion, Pd₂(dba)₃·CHCl₃, together with dppp and *p*-TsOH, catalyzes the regioselective carbonylation of 2,3dienylamines to α -vinylacrylamides. Since the reaction is highly regioselective and stereoselective for the α . β double bond, this method is useful for the preparation of α -vinvlacrylamides. In addition, it demonstrates the selective insertion of carbon monoxide into a carbonnitrogen bond of acyclic amines.

Acknowledgment. We are grateful to the Natural Sciences and Engineering Research Council of Canada for support of this research.

Supporting Information Available: General experimental procedures and characterization data for all starting materials and products; NMR (¹H, ¹³C) spectra for 2a-i (24 pages).

JO961614I

⁽⁷⁾ Da Costa, R.; Gillard, M.; Falmagne, J. B.; Ghosez, L. J. Am. Chem. Soc. 1979, 101, 4381

⁽⁸⁾ Osakada, K.; Chiba, T.; Nakamura, Y.; Yamamoto, T.; Yama-(b) Osakada, K., Chiba, T., Nakahuta, T., Tahlahuto, T., Tahlahuto, A. J. Chem. Soc., Chem. Commun. 1986, 1589. See also ref 11.
(9) Piotti, E. M.; Alper, H. J. Org. Chem. 1994, 59, 1956.
(10) (a) Kleijin, H.; Westmijze, H.; Meijer, J.; Vermeer, P. Recl. Trav. Chim. Pays-Bas 1983, 102, 378. (b) Djahanbini, D.; Cazes, B.; Gore, J.